The Drive Behind BPL in 2005: Internal Applications and Standards

OUTLINE

Internal Applications
 – Overview
 – Case Studies

Standards
 – Background
 – Emissions
 – MAC/PHY
 – Media
 – Installation/Hardware
 – Education

Next Steps

Internal Applications Overview

BPL Internal Applications Overview

On the Grid
- Asset Management
 - Power outage notification
 - Predictive maintenance
- Systems Optimization
 - Enhanced SCADA

At the Premises
- Advanced Metering
 - AMR
- Remote Connect/Disconnect
- Load Management
 - Energy management

Utility Applications
- Automatic meter reading
- Capacitor control
- Copper wire system replacement
- Demand prediction
- Detection and diagnosis of events at distribution transformers
- Distribution transformer overload analysis
- Line leading
- Outage localization and fault characterization
- Phase loss detection
- Power quality monitoring
- Safety check for isolated circuits
- SCADA delivery
- Substation monitoring
- URD outage diagnosis

At the Premises Applications
Key Drivers
- AMR
 - Improved demand side information and consumer feedback
 - Regulators desire more reliability and better demand management
- Load Mgmt
 - Energy costs spiking
 - LM technology maturing and equipment costs decreasing
 - Environmental issues (e.g., green power)
 - Good business and good PR with the communities that utilities serve.

On the Grid Applications
Key Drivers cont’d
- Asset Management
 - Post August 14 concerns
 - Reliability, maintenance
 - Stray voltage
- Systems Optimization
 - Visionary smart grid efforts by EPRI and CEA
 - Enormous potential cost-savings opportunity from these applications
Over $30 million per year can be generated in utility savings through the implementation of a BPL system in a sample Tier 1 market…

Internal Applications
Estimated Savings
Over $30 million per year can be generated in utility savings through the implementation of a BPL system in a sample Tier 1 market…

ConEdison

- Distribution Asset Management
 - Predictive Maintenance
- Systems Optimization
 - Advanced SCADA
- Load Management
 - Deferred Substation costs
- Activities
 - Deploying in Steam Tunnels for remote sensors, VoIP
 - Suburban deployment testing outage management

BPL could enable utilities to migrate away from schedule-based maintenance, improve safety and customer service.

Estimated efficiency gains – 30/50/80% examples

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>30%</th>
<th>50%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>U/L Labor & Maintenance/Ft</td>
<td>$71</td>
<td>$71</td>
<td>$71</td>
</tr>
<tr>
<td>Cost/Device</td>
<td>$5,000</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Feet/Device</td>
<td>1,900</td>
<td>1,900</td>
<td>1,900</td>
</tr>
<tr>
<td>Vintage Coverage Area (Ft)</td>
<td>377,211</td>
<td>377,211</td>
<td>377,211</td>
</tr>
<tr>
<td>Efficiency Potential for Cov Area (Ft)</td>
<td>113,163</td>
<td>188,606</td>
<td>301,769</td>
</tr>
<tr>
<td>Total that could be re-migrated</td>
<td>$1,244,796</td>
<td>$2,074,661</td>
<td>$3,319,457</td>
</tr>
<tr>
<td># of devices</td>
<td>251</td>
<td>251</td>
<td>251</td>
</tr>
<tr>
<td>Cost of Devices</td>
<td>$1,257,370</td>
<td>$1,257,370</td>
<td>$1,257,370</td>
</tr>
<tr>
<td>Benefit (Detriment) of implementation</td>
<td>($12,594)</td>
<td>$817,291</td>
<td>$2,062,087</td>
</tr>
</tbody>
</table>

Predictive Maintenance

BPL enable utilities to migrate away from schedule-based maintenance, improve safety and customer service.

Underground Sensors

BPL could support IEDs and EPRI “Fault Anticipator” applications. Also security implications.
HECO

- Advanced Metering
 - TOU rates, remote data collection
 - Labor productivity enhancements
- Load Management
 - Water heaters, air conditioners
- Activities
 - Led effort to develop a low-cost IP-addressable meter.
 - Testing advanced metering

Activities

- Ramping up from limited tests in residential environment to test wider utility applications
- Demonstrations held for PUC, DBEDT, Military, Local CLECs/ISPs, Verizon, Oceanic, Media, Developers, Hospitality Industry

DUKE POWER

- Metering
 - Read existing meters
 - Load Research
 - Price Signals
 - Pre-Paid metering
 - Service Disconnect
 - On-Demand Reads
 - Outage restoration
 - Gas & Water readings
- Distribution Optimization
 - Bank Meters
 - Substation Equipment
 - Distribution equipment
 - Capacitors
 - Relays
 - End of circuit
 - Voltage
 - Outage Detection
 - Fault Location

UPLC Internal Applications Committee

- UPLC Driving Development of Internal Applications
 - Chair: Tim Frost, ConEdison
 - UPLC Annual Conference, Winter Conference
 - Identifies applications, creative solutions
 - Next steps
 - Information collection/sharing
 - Collaborative solutions

Activities

- ITRON ERT meter collector
 - Enables hybrid AMR solution leveraging existing infrastructure
 - Enables electric, gas and water meter reads
- Form 9 Polyphase transformer rated IP meter
 - Replacement for exception route meter
 - Enables remote reading and programming
- Switched capacitor bank control model
 - Existing utility equipment
 - Enables remote reading and programming
- Security camera at substation
 - New utility application
 - Remote monitoring of facilities
Standards Overview and Update

Background

• IEEE BPL Working Group focused on hardware/installation standards for BPL (P1675)
• IEEE BPL Study Group formed in 2004 to explore other possible standards for BPL
 – Meetings:
 – Piscataway, NJ, Oct. 13, 2004
 – Attendance: approximately 20
 – Tasks: develop communications, whitepaper
 – San Diego, CA, Jan. 14, 2005
 – Attendance: approximately 40
 – Tasks: develop PARs, continue work on whitepaper
• Other developments
 – HomePlug Access BPL standard
 – Universal Powerline Alliance
 – CE-Powerline Alliance

Emissions

• Leadership: Aron Viner, Ambient
• Approach: technical, not regulatory
• Going forward:
 – Support ongoing standards efforts related to emissions at ETSI, CENELEC and CISPR
 – Compatibility w/ wireline & wireless devices
• Benefits:
 – For manufacturers: measurement methods
 – For operators: help detect, mitigate interference

MAC/PHY

• Leadership:
 – Jim Mollenkopf, Current Technologies
 – Jean-Philippe Faure, Illevo-Schneider Electric
• Approach: ComSoc-led effort, overseen by Study Group
• Going forward:
 – Representatives from various standards groups working together
 – Draft PAR for compatibility b/w in-home & access.
• Benefits:
 – Coexistence and interoperability
 – Scale

Media

• Leadership: Bruce Renz, Amperion
• Approach: build on field tests/other efforts
• Going forward:
 – Draw from ETSI, OPERA, EPRI and academic efforts
 – Develop common techniques for ways to measure/predict channel performance
• Benefits:
 – Serve as a guide for improving BPL performance and interference mitigation

Installation and Hardware

• Leadership:
 – Terry Burns, APS
 – Yehuda Cern, Ambient
 – Cindy Bambini, Ameren
• Approach: Work w/in existing standards to the extent possible
• Going forward:
 – Subgroups for hardware and installation
 – Needs utility participation
• Benefits:
 – Promotes safety
 – Lowers cost
Education

• Leadership: John Newbury, Open University
• Approach: Practical
• Going forward:
 – Develop Recommendation
 – Support from academics/industry
• Benefit
 – Qualified workforce

Conclusions

• Internal applications are in development and will be critical to utility adoption and widespread deployment of BPL
• Standards efforts coalescing under IEEE.
 – Removes uncertainty
 – Improves performance
 – Drives equipment production and interoperability
• UPLC next steps
 – BPL Symposium; IEEE Study Group Mtg. at UTC Annual Conference, May 22-25, Los Angeles, California
 – 2005 BPL Business Case Study

Questions?

Brett Kilbourne
Dir. of Regulatory Services & Associate Counsel
United Power Line Council
1901 Pennsylvania Avenue, NW
Fifth Floor
Washington, DC 20006
(202)833-6807
www.uplc.org