Internet Concentration and What it Tells Us About the Problems of the Information Economy

Eli M. Noam
Professor of Finance and Economics
Columbia University Graduate School of Business
April 2004
Director
Columbia Institute for Tele-Information

Questions:
• Has the Internet sector become more concentrated?
• More concentrated than other information and media industries?
• Causes and implications for the information sector generally

Industries of the Internet Sector: Basic Instrumentalities
• Backbones
• ISPs
• Portals
• Broadband Providers
• Internetworking Equipment
• Browsers
• Search Engines
• Modems
• Media Player Software
• IP Telephony

Self-Image: “You can’t tell a dog on the Internet”

• No past empirical study to answer the question of concentration
• My study looks at 95 US information sector industries
 – backbones, ISPs, long-distance telecom, broadcast TV, micro-computers, ISPs, mobile telecom, PBXs etc.
• Over the past 20 years
• Thousands of company reports and other sources over a 20 year period

Not Included
• Telecom conduits
• Applications
• Content
• Computer Hardware and OS
Concentration index #1:
- Herfindahl-Hirschman Index (HHI)
 \[HHI = \sum_{i=1}^{f} S_i^2 \]
- Antitrust enforcement guidelines classify markets
 - HHI < 1,000 Unconcentrated Market
 - 1,000 < HHI, Moderately Concentrated Market
 - 1,800 < HHI, Highly Concentrated Market

Concentration Index #2:
- C4 Index
 \[C_4 = \sum_{i}^{n} S_i \]
 Where: \(S_i \) = firm's market share of a given sub-industry
 \(i \) = firm in a sub-industry
- A weighted aggregate C4 for the entire information sector then is:
 \[WC_4 = \frac{\sum_{j}^{m} m_j \sum_{i}^{n} S_i}{M} \]
 Where:
 - \(m_j \) = total revenue of a sub-industry
 - \(M \) = total revenue for the information sector
 - \(S_i \) = market share of firm in a given sub-industry

Backbones
- WorldCom 41
- AT&T 13
- Genuity 11
- C4 74.0
- HHI 2174
- US Total Revenues ($ mil) 10,500

ISPs
- AOL Time Warner 44.2
- MSN 11.5
- United Online 8.1
- Earthlink 6.9
- Prodigy (SBC) 5.2
- AT&T WorldNet 2.0
- Other 22.1
- C4 70.7
- HHI 2226
- Total Subscribers 69.4
Portals (% users 2002)

<table>
<thead>
<tr>
<th>Company</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOL Time Warner</td>
<td>29.5</td>
</tr>
<tr>
<td>Yahoo</td>
<td>22.6</td>
</tr>
<tr>
<td>MSN* (Microsoft)</td>
<td>21.7</td>
</tr>
<tr>
<td>Other</td>
<td>28.9</td>
</tr>
<tr>
<td>US Total Revenues</td>
<td>2908</td>
</tr>
<tr>
<td>C4</td>
<td>85.6</td>
</tr>
<tr>
<td>HHI</td>
<td>2036</td>
</tr>
</tbody>
</table>

Media Player Software 2002

- **RealNetworks** 49.8
- **Microsoft Windows Media** 27.6
- **Apple Quick Time** 13.5
- **AOL Winamp** 6.2
- **Other** 2.9
- **Revenue ($ mil)** 153
- **C4** 97.1
- **HHI** 3462

Browser Software 2001

- **Netscape (AOL Time Warner)** 13.0
- **Microsoft** 86.0
- **Total Revenue ($ mil)** 300.0
- **C2** 100
- **HHI** 7565

Internetworking Equipment

- **C4**
- **HHI**
Internetworking Equip 2001

<table>
<thead>
<tr>
<th>Company</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco</td>
<td>48</td>
</tr>
<tr>
<td>Avaya</td>
<td>20</td>
</tr>
<tr>
<td>Marconi</td>
<td>8</td>
</tr>
<tr>
<td>Nortel</td>
<td>7</td>
</tr>
<tr>
<td>Alcatel</td>
<td>5</td>
</tr>
<tr>
<td>IBM (USA)</td>
<td>5</td>
</tr>
<tr>
<td>Siemens</td>
<td>2</td>
</tr>
<tr>
<td>Industry Revenue US ($mil)</td>
<td>14,840</td>
</tr>
<tr>
<td>C4</td>
<td>83.0</td>
</tr>
<tr>
<td>HHI</td>
<td>2871</td>
</tr>
</tbody>
</table>

Broadband Providers 2002

<table>
<thead>
<tr>
<th>Company</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRC</td>
<td>12.8</td>
</tr>
<tr>
<td>Verizon</td>
<td>11.5</td>
</tr>
<tr>
<td>Bell South</td>
<td>6.0</td>
</tr>
<tr>
<td>Qwest (US West)</td>
<td>4.3</td>
</tr>
<tr>
<td>Broadwing (Cincinnati Bell)</td>
<td>0.6</td>
</tr>
<tr>
<td>Cable</td>
<td></td>
</tr>
<tr>
<td>AOL Time Warner</td>
<td>18.4</td>
</tr>
<tr>
<td>Comcast Corporation</td>
<td>23.6</td>
</tr>
<tr>
<td>Cox Communications</td>
<td>8.5</td>
</tr>
<tr>
<td>Charter Communications</td>
<td>5.8</td>
</tr>
<tr>
<td>Cablevision Systems</td>
<td>4.9</td>
</tr>
<tr>
<td>Adelphia Communications</td>
<td>3.6</td>
</tr>
<tr>
<td>Total Revenues (mil)</td>
<td>4,762</td>
</tr>
<tr>
<td>C4</td>
<td>66.3</td>
</tr>
<tr>
<td>HHI</td>
<td>1389</td>
</tr>
</tbody>
</table>

Aggregate Concentration (weighted by size)

Weighted Aggregate HHI

\[W\text{AHHI} = \sum_{j=1}^{n} \sum_{m_{j}}^{f} S_{ij}^{2} \]

Where:
- \(j = \) an industry
- \(m_{j} = \) total revenue of an industry
- \(S_{ij} = \) each firm’s market share of an industry
- \(n = \) number of industries
- \(f = \) number of firms in an industry

Comparison #1: Internet vs Other Media

- Print
- Film
- Broadcasting
- Internet
- Broadband Internet
Findings

- The younger the medium
 - the more concentrated
 - The stronger concentration trend after 1996

Reasons?

Higher investment needs, greater economies of scale, greater network effects, greater risk from competition

Internet concentration likely to increase in near term

- Economies of scale
- Profitability potential of oligopoly

Comparison #2: Internet vs. Other Info Sectors

- Internet
- Telecom
- Mass Media
- IT

Concentration of the Four Major Segments of the Information Sector
Concentration of the Four Major Segments of the Information Sector

Concentration of Total Information Sector

Findings

• Mass Media concentration, though receiving much attention, and while growing, is the lowest of the 4 info-industry sub-sectors
• Internet (and telecom) are the most concentrated sub-sectors
 – Only ones above DoJ threshold of “highly concentrated”

3. Internet (and Mass Media) have highest growth in concentration
4. After 1996, telecom & Internet concentration up sharply
 – Mass Media steady up

Trends of Vertical Integration in the Internet
Even if a firm does not dominate any specific market, its presence in several markets might, in combination, become powerful.

Vertical Measure I:
The Participation Index (PI) shows extent of top firm

\[PI_n = \left(\frac{1}{n} \right) \sum_{j=1}^{n} P_i = \left(\frac{1}{n} \right) \sum_{j=1}^{n} 0.1 \]

Where:
- \(i \) = firm (top n firms in terms of information revenues)
- \(j \) = sub-industries
- \(n \) = number of sub-markets in which a firm participates

Vertical Measure II:
The Sector Share Index (SSI)

\[SSI_{sector} = \sum_{i} SSI_{firm} = \sum_{i} \frac{s_j m_i}{M} \]

Where:
- \(s_j \) = Firm \(i \)’s Share in Market \(j \), in percent
- \(m_i \) = Market revenues of sub-industry \(j \)
- \(M \) = Revenues of Total Sector
Share of Total revenue of Top 10 Companies in Internet Companies, of total information sector 1984 - 2001/2

- Internet sector increasingly part of:
 - Telecom industry
 - Cable TV
 - Mass Media conglomerates

Vertical Measure III:
The Company Power Index (CPI)

\[
CPI_{\text{industry}} = \sum CPI_{\text{firm}} = \sum \frac{s_j m_j}{M}
\]

Where:
- \(s_j\) = firm’s share in market j
- \(m_j\) = total revenue of sub-market j
- \(j\) = sub-industries, ranging from 1 to 52 (consisting of the 52 sub-industries)
- \(M\) = Revenues of total information sector

Company Power Index of Top 10 Internet Companies 1984 - 2001/2

Company Power Index Top 10 Internet Companies - Internet Activities Only, within Internet Industry Revenue 1984 - 2001/2

Company Power Index Top 10 Companies in Internet Industry 1984 - 2001/2 (Internet only)
Future:

- Broadband: even greater trend to concentration
 - Cost high
 - Already prices high in US duopoly
 - DSL-Cable

Similar trends:

- Applications
 - eBay
 - Amazon
- Major software
 - Microsoft
- Key hardware
 - Intel

Operating System Software

Microcomputers
Likely Implications

• Slowing of innovation & upgrade
• Higher consumer prices, higher profits
• Restrictiveness on content and applications (cable TV model) and content access pricing
• Global strength and presence

• Greater vulnerability to disruption
• More proprietary standards and protocols?
• Internet governance replaced by cartel
• Cross-subsidies and vertical extension of market power
• Gov regulation to deal with such problems of market power

Why Concentration?
Response to structural instability of many information industries

Information Sector Crisis
- Dot com bubble
- Telecom crash
- Music bust
- E-publishing stagnation
- PC drop
- Wireless saturation
- Semi-conductor slump
- Newspaper recession
- R&D crisis

Information Economy will be
- Volatile
- Cyclical
- Unstable
- Needed: Macro-economics of the information society

Common Revenue Problem of Information Industries
- Information has become cheaper for many a decade.
- It is now becoming difficult to charge *anything* for it.

Price Problems
- Music industry
- Online publishers
- Phone calls
- Cell phone
- Web advertising
- TV and radio
- Software
- Academic articles
- Newspaper
- Digital photos
- Semi-conductors

Two Basic Explanations for Crises
- “Perfect Storm” scenario
- “Fundamental instability”
“Fundamental Instability”
The entire information sector is subject to a gigantic market failure in slow motion.

Exceptions: Market Power
• Cable TV
• Sports rights

Basic Structural Reasons
1. High fixed costs and low marginal costs
2. Network effects
3. More competitive
4. Commodification
5. Inelastic demand

Consequence: a secular trend of price deflation in information products and services

Reaction by providers
• Price discriminate
• Innovate
• Hedge
• Cut cost
• Industry consolidation
Same economic factors lead again to a new cycle of investment overproduction and a new price collapse.

Cyclical instabilities common to other industries with similar characteristics of high fixed cost and low marginal costs—Airlines

The information industries are becoming interdependent under digital convergence.

Price deflation in the information sector will drag down the rest of the economy, too, through a multiplier effect.

Business Responses
- Try to consolidate and cartelize to create pricing power
- Price discriminate
- Technological innovation
- Outsource and offshore
- Protection of property rights to differentiate product

• As societies become information economies, they also become more volatile economies.
The role of government

Finland, Nokia
- 35% of all exports
- 12% of GDP
- Plus indirect contributions

Macroeconomic instruments of governments are based on the experience of the industrial economy

- Keynesian demand generation?
- Industrial support policy?
- Monetary policy?
- Competition policy?

Another policy approach: Assure a diversification of the economy
- Reconsider emphasis towards information sector
- Encourage industries outside of the information sector
 - Often low-tech industries
- Back to the basics, the industrial sector and the basic industries
- “Info-industrial” sector

Alternative: the Civil Society Sector?
- Volunteerism has structural problems too, the classic “tragedy of the commons” problems
Conclusion
• In the information economy
 – 1. Volunteerist activities are subject to the “tragedy of the commons”
 – 2. Private information markets are likely to frequently fail in “the tragedy of the digital market”
 – 3. Governments do not have many tools to deal with these failures

Economics, the “dismal science”

Next Questions:
• What are the implications for
 – Innovation, business strategy, stability of the industry, public policy?
• Discussed in my next books
 – “The Dark Side of the Internet”
 – “Media Concentration and Ownership in America”

END OF PRESENTATION

Thank You.