The “POT Bay”:
Phase II
Ameritech Takes a Step In The Right Direction
Summary

Ameritech, in a recent tariff filing before the Federal Communications Commission (FCC), has modified its requirement that all interconnectors use an Ameritech supplied point-of-termination bay ("POT Bay"). Instead of requiring a LEC-provided POT Bay, Ameritech now permits an interconnector to connect to the LEC network through a cable panel that is located within the interconnector's space (see figure 1). Under this new Ameritech policy, interconnectors still cannot connect their cables directly to the LEC's main distribution frame (MDF). However, interconnectors will incur lower costs and can now control and maintain the required point-of-termination equipment (the cable panels).

Figure 1: Ameritech's Proposed Scenario

Local Exchange Carrier Central Office

Interconnector's Space

Cable Panel

Multiplexer

Interconnector's Network

Customers

MDF

MDF

What is a POT Bay?

The POT Bay, or point-of-termination bay, is a device placed between a competitor’s network and the natural point of connection to the local exchange carrier (LEC) network. It is located between a LEC’s main distribution frame (MDF), which directs traffic to proper channels for distribution throughout the LEC network, and the interconnector’s collocated equipment (see figure 2).

The POT Bay is an unnecessary obstacle that adds to the costs of interconnection, serves no necessary engineering function, can degrade quality, and is nothing more than a latter-day “protective coupling arrangement.”

Yet, NYNEX, BellSouth, U.S. West, Southwestern Bell, and Pacific Bell still insist that a POT Bay be installed as a point of demarcation between the LEC and the competitive interconnector. These Bell Operating Companies (BOCs) currently require interconnectors to purchase and to utilize a LEC-provided POT Bay.

Significantly, Bell Atlantic and GTE do not require competitive interconnectors to use POT Bays. These two companies apparently recognize that today’s interconnecting competitive networks are designed, managed, and operated by experienced engineers and technicians who must offer their customers high performance and reliability.

Such widely divergent policies raise the question: Why do some LECs still require competitive interconnectors to use costly, inefficient, and anti-competitive POT Bays when others don’t?

Figure 2: Previous Scenario

2. The POT Bay usually consists of a metal frame, cross connecting cabling (generally coaxial cable or copper cabling), and in some cases, cross-connect panels (a fuse box). The interconnector’s cabling enters the POT Bay from one side and connects to “bridge” cabling which connects to the telephone company’s cables on the other side.

3. For further explanation on the wastefulness of a POT Bay, see The “POT Bay”: Several BOCs Attempt to Obstruct Interconnection...Again, Teleport Communications Group, Staten Island, NY, July 1993.

4. Bell Atlantic does, however, require an unnecessary repeater on all interconnector circuits, which has the same cost impact as if it required a POT Bay.
Ameritech's Interim Solution

The solution that Ameritech now offers interconnectors is a step in the right direction. Ameritech has unbundled point-of-termination equipment, so that interconnectors may purchase it separately from other LEC facilities and services or provide it themselves. This permits interconnectors that can provide a more cost effective and efficient substitute to do so.

Working with interconnecting firms to establish a short-term solution, Ameritech has made progress in reducing three problems that have obstructed interconnection: the high price of the point-of-termination equipment, the technical difficulties caused by the POT Bay, and the associated delays in customer service.6

Market-priced Facilities

By allowing interconnectors to provide their own point-of-termination equipment, Ameritech allows interconnectors to purchase the required equipment at competitive (market) prices. This is a significant change. Some LECs, knowing that interconnectors have no alternative, have proposed charging over $21,000 to purchase a POT Bay, and then tacked on a costly monthly recurring charge.7 TCG still contends -- and Bell Atlantic and GTE apparently agree -- that point-of-termination equipment, such as the POT Bay, is anti-competitive and unnecessarily raises the cost of interconnection. While Ameritech still requires interconnectors to connect through point-of-termination equipment (cable panels), progress has been made in its region because market forces will dictate the price of this equipment.

Reduced Technical Obstructions

Signals transmitted between the interconnector's facilities and the LEC's network normally can travel 655 feet before they must be "boosted," or regenerated, by expensive "repeaters." But the placement of a POT Bay between the two networks obstructs the signal in such a way as to cut the maximum "unrepeated" distance to only 85 feet. Consequently, when interconnectors are required to use a POT Bay, they are required to insert an expensive repeater. LECs do not incur the expenses of additional repeaters because their services are not obstructed by POT Bays.

By allowing competitive interconnectors to connect to the LEC network through termination equipment that is owned and controlled by the competitive interconnector, Ameritech's new design relies on rational engineering to ensure that interconnection arrangements are technically sound and cost effective. TCG applauds Ameritech's efforts as a step in the right direction, and encourages other LECs that require POT Bays to follow suit.

5. Hopefully, Ameritech will take the next step and, like Bell Atlantic and GTE, not require a POT Bay.

6. Southwestern Bell proposed to charge a $21,863 non-recurring charge to build a POT Bay, and a monthly recurring charge of $329. On June 4, 1993, Southwestern Bell reduced the non-recurring charge to $2,743 and the monthly rate to $41.34. This remains the largest POT Bay tariff.
Enhanced Customer Service

Giving the interconnector channel assignment control to the LEC’s main distribution frame (MDF) is also a critical change made possible by Ameritech’s filing. When the interconnector has channel assignment control, it can promptly provide service to its customers, just as the LECs are able to do. More importantly, it allows the interconnector to control its circuits and network. Because the interconnector does not have to wait for the LEC to process its customers’ request for circuits, an interconnector can offer service to its customers in a more timely and efficient manner.

Conclusion

Clearly an alternative to the POT Bay exists, one that reduces costs and diminishes technical obstructions. Ameritech is the first LEC to work with competitive interconnectors to overcome these obstacles. Why are the other LECs not cooperating?

What Still Needs to be Done?

While Ameritech’s step is welcome, “cooperation” should not be voluntary. Regulators should require LECs to allow interconnecting carriers to connect their cables directly into the LEC’s MDF, as Bell Atlantic and GTE permit. This will simplify the technical process of interconnection and eliminate the needless expense associated with it.

Direct interconnection will increase network reliability. Direct interconnection will lower costs for the interconnecting network, the LEC and, ultimately, for customers.

For further information:

Gail Garfield Schwartz
Vice President, Government Affairs
Teleport Communications Group
(718) 983-2892

Don Sussman
Manager, Government Affairs
Teleport Communications Group
(718) 983-2932